Table of Contents

1. Program Authority .. 4
 1.1 Graduate School .. 4
 1.2 IPiB Faculty and Committees .. 4

2. Admission to the Program .. 4
 2.1 Graduate School Admission Requirements .. 4
 2.2 Program Admission Requirements .. 5
 2.3 Admission Timeline ... 5

3. PhD Requirements for a Major in IPiB .. 5
 3.1 Program Course Requirements .. 5
 3.2 Graduate School Minor Requirements ... 6
 3.3 Seminar Requirements ... 8
 3.4 Course Load .. 10
 3.5 Grades ... 11
 3.6 Teaching .. 12
 3.7 First-Author Publication ... 12
 3.8 Individual Development Plan (IDP) .. 12
 3.9 Thesis Advisor and Thesis Committee .. 13
 3.10 Examination and Review Procedures ... 14
 3.11 Progress Toward Degree ... 20

4. Guidelines for New PhD Students .. 20
 4.1 Lab Rotations & Choosing a Thesis Advisor ... 20
 4.2 Checklist for Degree Progress ... 22

5. Graduation from IPiB with a Master’s Degree .. 26
 5.1 MS Course Requirements ... 26
 5.2 MS Thesis Committee .. 26

6. PhD with Joint Major in Biochemistry ... 26

7. Joint MD-PhD Program .. 26

8. Minor Option A in Biochemistry ... 27
 8.1 Admission to Minor Option A ... 27
 8.2 Graduate Coursework for Minor Option A ... 27
 8.3 Grades ... 27
 8.4 Examination and Review Procedures ... 27

9. Personnel Issues ... 28
 9.1 Changes in Laboratory Assignment ... 28
 9.2 Grievances and Appeals ... 28
 9.3 Harassment .. 29
 9.4 Research Misconduct ... 29
10. Appendices ... 31
 A. IPiB Higher Learning Goals...31
 B. IPiB Faculty, Academic Year 2017-18...32
 C. Standing IPiB Committees, Academic Year 2017-18..34
 D. IPiB Staff, Academic Year 2017-18..38
 E. Summer Rotations ...39
 F. Organizing and Presenting a Seminar ..40
 G. Questions to Ask Prospective Thesis Advisors ...41
 H. Timeline to Graduation ...42
 I. Proposed Standards for Examining Dissertations...43
 J. Checklist for Graduation...44
1. Program Authority

1.1 Graduate School

The Graduate School is the ultimate authority for granting MS and PhD degrees at the University of Wisconsin-Madison (“University”). The doctorate of philosophy is the highest degree conferred by the University, and it is never conferred solely as a result of any prescribed period of study, no matter how faithfully pursued. Rather, a PhD is a research degree and is granted on evidence of distinctive attainment in a specific field and on ability for independent investigation as demonstrated by a dissertation presenting original research or creative scholarship with a high degree of literary skill. The Departments of Biochemistry and Biomolecular Chemistry administer a graduate degree program, the Integrated Program in Biochemistry (IPiB or “Program”) under the authority of the Graduate School. If completed successfully, IPiB’s minimum requirements meet all Graduate School requirements for conferring a PhD (or MS) degree. The Program is designed to prepare students for outstanding professional careers in research, teaching, and science communication.

1.2 IPiB Faculty and Committees

Program authority to set degree requirements beyond the minimum required by the Graduate School lies with the IPiB faculty. The policies described in this handbook have been approved by the IPiB faculty as a whole, and are subject to periodic review and update. Day-to-day Program administration is delegated by IPiB faculty to the Steering Committee, whose membership is appointed by the Chairs of the Departments of Biochemistry and Biomolecular Chemistry. The Steering Committee provides guidance to students and faculty with regard to Graduate School and Program requirements, and arbitrates any requests for exceptions to Program requirements. They are aided by Program staff and related committees – Admissions Committee, Recruiting Committee, New Student Orientation Committee (NSOC), Student-Faculty Liaison Committee (SFLC), and Examination and Certification Committee (ECC). The ECC has several specific functions in arbitrating course requirements and student committees as described in Appendix B.

See appendices for listings of IPiB faculty, staff, and committee composition.

2. Admission to the Program

Admission into IPiB is contingent on meeting requirements set forth by the Graduate School and by the Program.

2.1 Graduate School Admission Requirements

The Graduate School web site (http://grad.wisc.edu) details minimum University admission standards, including expected degree achievement from an accredited institution, GPA, standardized test results, and English language proficiency.
2.2 Program Admission Requirements

2.2.1 Undergraduate Degree and GPA: For admission to graduate study in IPiB, a student must have completed a BS or BA degree from a recognized, accredited college or university. Candidates should have an undergraduate degree in a physical or biological science major. A minimum GPA of 3.0 (on a 4.0 scale) is required.

2.2.2 Background Coursework: In addition to meeting the general requirements of the Graduate School, IPiB requires at least 3 semester credits (or the equivalent) of coursework in each of the following subjects: organic chemistry, biochemistry, physics, and physical chemistry. In addition, prior coursework in mathematics, biology, and genetics is strongly recommended. Upon receipt of a student’s final transcript, the ECC will determine if any deficiencies exist and the Graduate Student Services Coordinator (Coordinator) will follow up with the student with a recommended course of action.

2.2.3 Research Experience: Undergraduate research experience is strongly recommended.

2.3 Admission Timeline

The Program application deadline is December 1. Students are selected between January and March for admission the following September. The deadline for acceptance or declination of an offer of admission is April 15.

3. PhD Requirements for a Major in IPiB

The primary requirement for achieving a PhD in IPiB is the completion of a noteworthy intellectual contribution to biochemical research. PhD candidates are expected to do significant, original research during their degree tenure and to write a thesis based on this research. The thesis must represent a substantial effort from both the experimental and literary points of view. The purposes of all other Program requirements listed below are to ensure students have strong, broad-based background knowledge of general biochemistry so they may perform effectively and proficiently in all applications of the science, and to assess the level of student achievements with regard to Program and professional standards.

Appendix A sets forth IPiB’s learning goals for its graduate students and how the program’s requirements and activities are designed to achieve those goals.

3.1 Program Course Requirements

In order to graduate with a PhD in Biochemistry from IPiB, students must fulfill the following requirements.

3.1.1 Rectify Admission Deficiencies: Any deficiencies identified by the ECC in the background coursework (Section 2.2.2) must be made up during the first two years of graduate study.

3.1.2 Complete Required Courses: All students must complete the following course series (see 4.2 for typical timeline):
- Biochem 660: Methods in Biochemistry (2 credits, Fall)
- Biochem / BMC 701: Professional Responsibility (1 credit, Fall)
- Biochem 729.006: From Atoms to Molecules (3 credits, Fall)
- BMC 720: Biochemistry of the Cell (3 credits, Spring)
- Biochem / BMC 990: Advanced Research (see 3.4 below, ongoing)

In addition, first-year IPIB students are required to attend the weekly Biochemistry Colloquium series in their first year of graduate study. Two unexcused absences are allowed; excused absences require approval of the ECC.

3.1.3 Breadth Requirements: Students must complete a minimum of two additional graduate-level (600 or above or that carry the graduate attribute) didactic or laboratory courses in order to fulfill their breadth requirements, and a minimum of 6 total credits is required. Courses must be chosen from at least 2 of the following categories: physical sciences, biological sciences, or quantitative sciences. One-credit seminars do not count toward the breadth requirements.

The IPIB website, https://ipib.wisc.edu/cs_courses.php, lists approved courses that satisfy these breadth requirements. If a student wants to meet the breadth requirement by substituting a University course not listed on the website, the student must petition the ECC for approval by submitting a course syllabus and a written request that specifically justifies how the proposed substitute course meets the intent of the breadth requirement.

For example, the intent of the physical science breadth requirement is to familiarize students with the physical side of biochemistry. Just because a course is offered by the Chemistry Department does not guarantee it will meet this intent. A student's advisor must indicate approval of the substitution request in writing. The request will then be considered by the ECC. Approval by the ECC must be requested prior to enrollment in the substitute course.

3.1.4 Additional Coursework: At the discretion of a student's thesis advisor, thesis committee, or the ECC, additional remedial or advanced coursework may be recommended to enhance the student's professional training.

3.2 Graduate School Minor Requirements

The Graduate School specifies that a PhD Program must be rationally unified, with courses that contribute to an organized plan of study and research. Most courses are selected from a single group embracing a principal subject of concentration, called the "major" (in this case, Biochemistry). Additional courses are selected from one or more related fields, called the "minor," to provide educational breadth. The Program course requirements for a major in Biochemistry are outlined above (see 3.1). The Graduate School minor course requirements may be satisfied by Minor Option A (Focused) or Minor Option B (Distributed). An average GPA of 3.00 on all minor coursework is required.
3.2.1 **Minor Option A (Focused):** requires a minimum of 10 credits in a *single* department or field of study. With the advice of a "minor advisor," the student chooses courses from the offerings of a particular University department that covers a discipline related to biochemistry (*e.g.*, chemistry, bacteriology, genetics, neuroscience, computer science, mathematics, *etc.*). The specific requirements to be met are prescribed by the chosen minor department.

3.2.2 **Minor Option B (Distributed):** requires a minimum of 10 credits in one or more departments that cover a discipline(s) related to biochemistry and can include coursework in the major department.

As a matter of course, many IPiB students select Minor Option B to fulfill the Graduate School minor requirements because IPiB allows (nearly) all coursework credits taken for the major (see 3.1) to count toward the Option B minor *in addition* to counting toward the major requirements. In other words, Biochem 660 (2 credits), Biochem / BMC 701 (1 credit), BMC 675 (3 credits), and the physical, biological, and/or quantitative sciences breadth requirement (6 credits total) may be combined to provide all 10 credits for an Option B minor.

3.2.3 **University Coursework not Applicable to the Minor:** The Graduate School stipulates that the 10-credit minimum for Option A or B minor requirements can only be fulfilled by advanced (300 level or above) didactic or laboratory courses. Seminar courses (*e.g.* Biochem 901 through 945) and advanced research study (Biochem / BMC 990) credits are not applicable toward minor requirements.

3.2.4 **Non-University Coursework:** With the approval of the ECC and the Graduate School, students may receive graduate-level transfer credits, applicable toward a Biochemistry major or Option B minor, for courses taken at another institution.

If a student believes that a course he or she has taken at another institution is equivalent to one of the IPiB basic courses or an Option A or B minor course, the student should contact the professor in charge of the IPiB course to request credit for the equivalent course. With the written approval of the IPiB course professor, the student may submit a request for a credit transfer / substitution to the Coordinator. The ECC will make the final determination on the course substitution.

The maximal credit toward the major or Option A or B minor that will be given for courses taken elsewhere is 6 semester credits.

3.2.5 **Certification of the Minor:** To ensure chosen minor coursework meets the requirements of the Graduate School, a student must file a proposal for their minor program with the Coordinator before his or her preliminary examination can be scheduled. The First Thesis Committee Meeting Form is used for this purpose.

Usually, the proposed coursework is discussed and the form is completed during a student's first thesis committee meeting (Section 3.10.1). To certify a Minor Option A, the form must include the signatures of the thesis advisor and a representative of the minor
3.3 Seminar Requirements

3.3.1 Continuous Seminar Enrollment: After completing one semester of graduate work, students must register for an advanced Biochemistry, Biomolecular Chemistry or other approved seminar course each fall and spring semester of each academic year. Letter grades (A - F) are assigned in semesters when students present a seminar, and grades of S (Satisfactory) or U (Unsatisfactory) are assigned in semesters when students attend, but do not give a seminar.

Students who received a U grade for any seminar (usually due to excessive unexcused absences) must work with the seminar instructor to devise a plan to remedy the grade and have it changed to an S. Students cannot graduate with a U grade on their transcripts.

3.3.2 Alternative to Continuous Seminar Enrollment. Dissertators who wish to take a three-credit course without going off of dissertator status may do so with appropriate Program approval. The Coordinator can explain and must be contacted in order to initiate the approval process. This alternative approach may not be used in a semester in which the student is planning to fulfill a seminar presentation requirement.

3.3.3 Required Seminar Presentations: During their graduate careers, students are required to present a minimum of three seminars in advanced seminar courses and receive a grade of B or better for each seminar presentation.

- One literature seminar will be given in an advanced seminar course that is related to the student’s research area.

- One literature seminar will be given in an advanced seminar course that is unrelated to the student’s research area. The goal of this seminar is to develop a broader base of knowledge, and to become familiar with different scientific approaches.

A good rule of thumb for students is to choose a seminar topic that they do not need to know to perform their own research project well. In addition, students should be accessing journals of general significance that they may not necessarily read regularly for their own research.

- One seminar will be presented on their research progress (“IPiB Seminar”) in the interdepartmental graduate seminar (currently BMC 901 / Biochem 729). This should generally occur in the fourth or fifth year of graduate study. Students are required to enroll for two semesters in this seminar series, even though they are required to present a seminar only once. Students may present more than once, especially if they wish to gain more public speaking experience. Exceptions to this requirement must be requested of and approved by the ECC. The Coordinator can assist in this request.

The research seminar should take about an hour and cover background literature relevant to the student’s research, research progress to date, and future research
plans. About half of the seminar (20 to 25 minutes) should be devoted to background, such as literature relevant to the student’s research, past research in the lab relating to the student’s project, etc. The next half (about 20 to 25 minutes) should describe the student’s research progress (experiments, data, techniques, etc.), and about 5 minutes should be devoted to future research directions and plans. As usual, the student should allow 10 minutes at the end of the seminar for audience questions.

Some students who are supported by fellowships or training grants may have additional seminar requirements that cannot replace those existing in IPiB. However, a training grant presentation may count toward the student’s “inside” seminar presentation requirement.

The form that needs to be completed, signed by the seminar instructor, and returned to the Coordinator is found on the IPiB website under “Current Students” and “Download Forms.”

3.3.4 Seminar Substitution: A student may petition the ECC to substitute enrollment in an equivalent University advanced seminar course in lieu of those offered by the Departments of Biochemistry and Biomolecular Chemistry if participation in that course seems especially appropriate to the student’s course of study. The IPiB seminar requirement may not be substituted or waived. The Program presentation requirements (two seminars) can be fulfilled through a variety of campus courses and seminar series. These may include, when applicable, series sponsored by training grant programs, such as MBTG, BTP, CBIT, Biophysics, and Virology.

IPiB students who are required to take an ethics refresher course late in their graduate career may use that course toward the continuous seminar enrollment requirement.

3.3.5 Biochemistry 799, Practicum in Teaching: In lieu of one required seminar presentation (Section 3.3.2), students may, with the instructor's consent, enroll in Biochemistry 799 (1 credit). This course provides an opportunity to plan and deliver a graduate-level instructional lecture in Biochemistry 660, and can fulfill the student’s “inside” seminar requirement.

3.3.6 Biochemistry 729, Practicum in Undergraduate Teaching: In lieu of one semester of required seminar enrollment, a student may, with the instructor’s and thesis advisor’s consent, enroll in Biochemistry 729 (1 credit). Biochemistry 729 provides an opportunity to lead a seminar section of Biochemistry 551, in which our undergraduate Biochemistry majors present a seminar on a research paper. Participation in this course provides graduate students with an opportunity to gain additional teaching experience and undergraduates with help in improving their presentation skills. Participation in 729/551 does NOT count toward a required seminar presentation or the teaching requirement, but does fulfill the requirement for continuous seminar enrollment.

3.4 Course Load

3.4.1 Graduate School Minimum Graduate Coursework Requirement: As of Fall 2014, the Graduate School requires completion of at least 51 graduate-level credits for a PhD. The
Graduate School’s Minimum Graduate Coursework Requirement states that at least 50% of credits applied toward the Program’s graduate degree credit requirement must be courses designed for graduate work (this includes but is not limited to online, thesis/research, independent study, and practicum/internship credits). Program requirements stipulate that this graduate coursework must be numbered 700 or above; or numbered 600 to 699 and:

- be specifically designed for graduate students in a graduate program; or
- assess graduate students separately from undergraduate students; or
- have a graduate student enrollment of greater than 50% in any given semester.

The Graduate School’s minimum graduate residence requirement stipulates that a minimum of 32 credits must be earned while enrolled as a graduate student at UW-Madison. This requirement cannot be satisfied by summer sessions or part-time attendance only. Acceptable work includes all Program coursework, coursework for the minor, seminar credits, and research credits.

3.4.2 Course Load for Non-Dissertators

The Graduate School requires non-dissertators to register full-time for 12 credits of graduate-level courses each fall and spring semester and for 2 credits in the 8-week summer session until all major and minor coursework requirements are met. (Students who are trainees or fellows may need to register for more than 2 credits, depending on the terms of their traineeship or fellowship.) All credits must be in science courses (with a possible exception for international students who require English courses) and may include any didactic courses related to IPiB, as well as research, seminars, and courses taken for the minor.

Exceptions to this requirement must be requested of and approved by the ECC. Contact the Coordinator for assistance.

3.4.3 Dissertator Status

Students should achieve dissertator status by the end of the 4th semester if they:

- registered for at least 12 credits per semester and 2 credits each summer (32 credits minimum);
- completed all required coursework including the minor, but excluding seminar participation and the teaching requirement; and
- passed the preliminary examination.

3.4.4 Course Load for Dissertators

Dissertators should register for 2 credits of advanced research (990) and 1 seminar credit each fall and spring semester and for 3 credits of advanced research each summer session until completion of the degree. Dissertators exceeding 3 credits per session will lose dissertator status and be assessed segregated fees at the (higher) non-dissertator rate.

Exceptions to this requirement must be requested of and approved by the ECC. Contact the Coordinator for assistance.
3.4.5 **Continuous Enrollment:** Once a student’s signed preliminary warrant is filed, the student must be continuously enrolled as a dissertator through the day of filing his or her PhD thesis with the Graduate School. For this purpose, registration in a given academic term extends up to the first day of classes of the following term. If a student delays filing his or her thesis until or after the first day of classes of a given academic term, the student must register for that term. Those who fail to maintain continuous enrollment are subject to a penalty of 12 times the current per credit fee (dissertator rate), and are personally responsible for payment of this penalty.

Exceptions to the continuous enrollment requirement may be made for dissertators who accept an internship during the Summer session. Students should discuss their options with their thesis advisors, the Coordinator, and/or the IPiB financial and human resource professionals.

3.5 **Grades**

3.5.1 **Cumulative GPA:** The Graduate School requires all MS or PhD students to achieve a cumulative grade point average (GPA) of 3.0 (B) or better in all lecture and laboratory courses taken at the University. If a course is repeated because of an unsatisfactory grade, both grades are included in the cumulative GPA. Grades in research and advanced seminars, unless letter-graded, are not included in this average.

3.5.2 **Minimum Grades for Major:** The minimal acceptable grade in any Biochemistry, Biomolecular Chemistry, or other approved course applied toward IPiB course requirements (Section 3.1) is a BC. Any grade of C or lower requires repeating the required course and receiving a grade of BC or better.

3.5.3 **Satisfactory Progress:** Success in the PhD program is determined by satisfactory progress in both coursework and research. Student coursework is determined by program requirements as well as by the student’s thesis committee. In many instances, the committee will suggest additional courses that aim to help the student in his or her research.

Satisfactory progress in the lab is determined by the student’s thesis advisor. This includes, but is not limited to, working regular hours in the lab as set by the thesis advisor, participating in lab-related activities, and keeping laboratory notebooks. If a student is not making satisfactory progress, the thesis advisor will consult with the student’s thesis committee and the student may be dismissed from the program.

3.5.4 **Grade Synopsis:** PhD-level coursework requirements for the major and minor are aimed at preparing a student for a career-long profession of advanced study and are not intended to be remedial. A student cannot be certified for the PhD until all required coursework is completed with graded achievements that meet or exceed the minimum standards for the major, the minor, and the Graduate School cumulative GPA.
3.6 Teaching

3.6.1 Teaching Requirement: Program candidates for the PhD degree must participate in two semesters of teaching as part of their training. Teaching consists of assisting in an assigned Program laboratory or lecture course, usually in the second and third years of graduate study.

The call for graduate assistants’ (GAs’) teaching preferences is issued in April for the upcoming academic year to all second- and third-year students who need to fulfill their teaching requirements. Assignments are ideally confirmed by mid-June. Students are encouraged to talk with the instructors of courses for which they are interested in serving as a GA, and to share any preferences with the Coordinator.

In order to meet the teaching requirement for a particular course, GAs must meet the expectations of the course instructors regarding their roles and responsibilities in the course. If these expectations are not met, that course will not be counted toward meeting the teaching requirement.

3.6.2 Waiver of Teaching Requirement: Students with prior teaching experience while enrolled in another English-speaking graduate program may petition the Program's Graduate Teaching Assignment Committee (GTAC) for waiver of one of the two semester teaching requirements. Such application must be made by February 1 of the student’s first year in IPiB. Only one of the two semester requirements may be waived.

3.7 First Author Publication
Students must have at least one first author or co-first author research paper describing their work that has been submitted to or published in a peer-reviewed journal. The student’s thesis committee can waive this requirement under special circumstances and this will require approval by the ECC. Such circumstances might include co-authorship on a multi-disciplinary, very high profile publication.

3.8 Individual Development Plans (IDPs)
As of October 2014, graduate students (and postdoctoral fellows) who are supported by National Institutes of Health (NIH) funds are required to create and maintain an individual development plan (IDP) to help them set, track, and achieve their professional goals. The contents of the IDP are confidential to the student, but the student’s thesis advisor is required to report IDP activity among its annual reporting requirements.

As such, IPiB has determined that students should use their annual progress report meetings as the vehicle for sharing with their thesis advisors only as much information about their IDPs as they are comfortable sharing. Thesis advisors can use this information to demonstrate their compliance with this NIH requirement.

Templates, guidelines, and other resources for IDP development and maintenance are available at www.grad.wisc.edu/pd/idp.
3.9 Thesis Advisor and Thesis Committee

3.9.1 Thesis advisor: Every IPiB graduate student must have an IPiB faculty thesis advisor. The thesis advisor advises the student about coursework, supervises the student’s research, and acts as a mentor to the student through the student’s graduate career. The thesis advisor must approve the student’s coursework before registration for a given semester and must also approve any subsequent changes to it.

3.9.2 Thesis Committee: As of September 1, 2017, the Graduate School will require a minimum of four graduate University faculty to serve on students’ thesis committees. The IPiB Steering Committee recommends that students maintain a five-person thesis committee, but will accept a minimum of four per Graduate School policy. (See also Section 3.9.6 on establishing a second mentor.)

A PhD thesis committee is composed of at least four graduate University faculty members and no more than six, including the thesis advisor. The thesis committee is empowered by the Program to advise the student about certification, administer the preliminary examination, oversee yearly progress reports, approve thesis composition, and conduct the final PhD examination.

By May 31 of their first year of graduate study, students, in consultation with their thesis advisors, should select a minimum of three members of the graduate University faculty to serve on their thesis committee. The IPiB Program requires that at least one of the student’s thesis committee members be an “outside” member. An outside committee member must have at least a partial appointment in a department other than Biochemistry or Biomolecular Chemistry. Membership in another PhD program is not sufficient to be an outside member of an IPiB thesis committee. The IPiB program also requires that at least three of the committee members, including the thesis advisor, be IPiB trainers. Students choosing Minor Option A typically include the minor advisor among their selected faculty.

It is the student’s responsibility to seek and obtain verbal approval from their selected faculty to serve on this committee. The ECC will designate which committee member from IPiB shall serve as Chair for the preliminary exam. All other committee meetings are usually chaired by the thesis advisor. Committee composition must be approved by the ECC prior to a student’s first thesis committee meeting (see 3.10.1).

3.9.3 Committee Changes: Typically, a thesis committee is appointed for the duration of a student’s degree program. Temporary or permanent committee changes will be considered by the ECC if a written request, signed by the thesis advisor and the student, is submitted to the Coordinator for ECC consideration. (A request by email that is copied to the thesis advisor is acceptable to demonstrate advisor approval.) Any requested changes to the committee makeup require prior verbal approval from the substitute member.

If a student requests approval for changing more than one committee member within one year of his or her final defense, the request must include a detailed justification for the change(s) in order to be considered by the ECC.
3.9.4 Challenge to the Student: No one has more at stake in a graduate program than the student. To obtain a quality education, the student must play an active role in: choosing a concerned, knowledgeable committee; scheduling annual meetings; informing the membership; and designing a challenging, high-quality learning program.

3.9.5 Challenge to the Thesis Committee: The thesis committee is responsible for ensuring that the student’s formal education has the proper breadth and foundation. Beyond this, the committee should aid in the development of an outstanding, rigorous plan of advanced study, including providing guidance for seminal research in an area of scientific importance. The members should be knowledgeable about courses and other educational opportunities so they may play an active, thoughtful role in the development and evaluation of a student’s education. They should be available for consultation outside of scheduled meeting times, and responsive to the scheduling of required student meetings.

Attendance by all five thesis committee members at the preliminary examination and the thesis defense is a program requirement. If a thesis committee member is unable to attend either examination, that committee member should contact the student and the student’s thesis advisor immediately, so that the exam can be rescheduled or a substitute/replacement committee member can be found. If a committee member that was expected to attend fails to appear for the exam, the exam should proceed with four committee members and the student should notify the Coordinator after the exam to report the absence. If more than one committee member fails to appear, the exam must be cancelled and rescheduled.

3.9.6 Informal Establishment of a Second Mentor: Past surveys of graduating students have revealed that many have benefited from establishing a strong interaction with a second mentor who may or may not be a member of the thesis committee. These interactions arise typically from a shared research interest and provide an opportunity to obtain additional guidance in professional development. It may also lead to a second significant letter of recommendation. It is recommended that students seek out such mentorship, especially as they approach their fourth year of graduate study.

3.10 Examination and Review Procedures

3.10.1 First Thesis Committee Meeting: The student’s first thesis committee meeting must be convened prior to the beginning of the second academic year to evaluate the student’s performance in coursework and discuss his or her research project. At a minimum, the student’s thesis advisor, committee chair, and outside committee member must be present at this meeting. In the event any committee member should miss this meeting, the student must contact him or her within one week for an individual reprise of the meeting content, and to obtain the requisite signatures.

The goal of the first meeting is to introduce the student’s research area and outline the research goals. The second meeting, the preliminary examination, is the proper forum to discuss the route to those goals.
One week before the first thesis committee meeting, the student prepares a brief outline of the proposed research aims and distributes it to his or her thesis committee, together with copies of his or her undergraduate and graduate transcripts. The meeting is typically informal, but it provides an excellent opportunity for the committee members to learn about the student and how they might contribute to his or her career. An outcome of the meeting should be a completed First Thesis Committee Meeting Form, signed by all five committee members.

3.10.2 Year 2 Preliminary Examination

Preliminary Warrant: To initiate the preliminary exam procedure, the student completes and submits to the Coordinator a “Request for Preliminary Warrant” at least four weeks before the preliminary defense date. After a successful examination, the student’s thesis committee signs this warrant, and the student returns it to the Coordinator who retains it until the student has completed all required coursework, including the Graduate School minimum credit requirement. Only after the warrant is completed and filed with the Graduate School is a student certified for the PhD and able to enroll as a dissertator.

In IPiB, the advanced seminar requirement and the teaching requirement do not need to be completed before filing the preliminary warrant with the Graduate School. However, students are advised to make diligent progress toward these requirements as quickly as possible. A student may not submit a "Request for MS or PhD Warrant" until the teaching requirement is complete and all seminars (or definitive plan for completion of the required seminars) have received ECC approval.

Exam Expectations: Preliminary or qualifying examinations are a standard feature of PhD Programs. The process serves to evaluate whether a student meets the expected professional standards for educational acumen, scientific background, aptitude for research, and literary competency. The process focuses attention on a candidate's proposed research and provides a realistic appraisal of the likelihood of degree completion.

Exam Timing: IPiB students are expected to complete the preliminary exam process before the end of their fourth semester in residence. Exceptions to the typical exam schedule require ECC approval. The Coordinator initiates the scheduling of preliminary exams at the beginning of the spring semester.

Written Proposal: Starting in Fall 2017, the preliminary proposal format will be based on that required of applicants for NIH F31 fellowships, described below. For more detailed information, please visit the NIH website that focuses on the F31 grant, https://grants.nih.gov/grants/guide/pa-files/PA-14-147.html. No deviations from these format requirements are allowed, except for the optional Methods section.

Students must prepare a written research proposal and present it to their thesis committees for evaluation no less than two weeks before the date of the preliminary exam. An electronic copy of the proposal must be given to the Coordinator when distributed to the thesis committee, and becomes part of the student’s permanent record.
Students should consult with their thesis advisors in planning the proposed research and during proposal writing. However, the thesis advisor should not proofread or edit the proposal. It is recommended that the thesis advisor read the research proposal once and provide a general critique. Questions about the proposal prior to the preliminary examination should not be asked by committee members of the student. The thesis committee will have the option to postpone the preliminary exam if the written research proposal has significant deficiencies.

Format: Layout matters; students should strive to make their prelim proposals readable. Use single-spaced text (11 pt. font or higher) throughout the proposal. Page limits listed below include all figures and figure legends. Figures and other images should be embedded in the body of the proposal with clear legends. Margins should be one-half inch on all sides. There is no limit on the length of the proposal’s bibliography.

Title and Abstract: The proposal title should be short and informative. The abstract should be no longer than a half page.

Specific Aims: In one page, the specific aims portion defines the problem and objectives of the proposed research. A brief description of the experimental approach and indication of why the expected results should represent a significant advance in the field should be included.

Research Strategy: This should be the major section of the preliminary proposal and no more than 6 pages total. This section should be organized into the following subsections: significance (usually 1-2 pages), innovation (usually 0.5-1 page), and approach (usually 3 to 4.5 pages). The goal is to describe the significance of each “Specific Aim” and how the aims will be approached. The student should explain the objective and rationale of the designed experiment, the results expected from the experiment, and how the results will be interpreted. Any preliminary data or results of feasibility studies can be included in this section. Students should be as specific as possible about how the experiments will be carried out, but the details can be elaborated upon during the preliminary exam. Problems inherent to the experimental approach should be discussed, as well as alternate approaches to be tried if one approach fails. From the anticipated results, what new experiments will follow? Students should indicate what specific aims are dependent upon successful resolution of earlier objectives and which are independent, and the level of priority that should be devoted to each objective.

Methods (optional): Students may include up to two additional pages to describe the methods they plan to use in their designed experiments to get the results they expect.

Oral Preliminary Examination: At the beginning of the oral examination, the committee chair reiterates committee member and student procedures, and ensures that members from outside IPiB are fairly apprised of Program expectations. All five members of the student’s thesis committee must be present.

The student distributes the appropriate evaluation forms, as provided by the Coordinator, to the committee chair and members. The student gives a 20-minute, *uninterrupted* oral
presentation of the research proposal to the committee, and then responds to committee questions. The thesis advisor does not participate in the question period, except as requested by other committee members and then only to provide brief points of clarification. The oral examination phase may not exceed two hours.

The student should not attempt to cover every detail of the proposal, as that would be difficult to do in 20 minutes and would be redundant since the members of the thesis committee will have read and thought about the proposal. Rather, the student summarizes the most significant and interesting features of the proposal to generate enthusiasm for the research project.

The written proposal and oral presentation serve as a starting point for further discussion. The aim of the discussion is to explore not only in-depth knowledge of the specific proposal topic, but also broader knowledge of biochemistry. Examination questions that deal with breadth of knowledge in biochemistry can be drawn from IPiB coursework, and might include discussion of experimental evidence and the practice and theory of techniques.

After the exam is completed, the student is excused and the committee members complete the evaluation forms addressing how well the student conveyed the significance, innovation, and approach of the proposal by addressing the following criteria:

A. Quality of the written proposal
B. Quality of the oral presentation
C. Ability to answer questions
D. Knowledge of background material
E. Quality and quantity of work accomplished so far
F. Experimental design
G. Defense of research plan
H. Feasibility of work completion within a reasonable timeframe

The committee takes a non-binding vote on whether the student should pass, conditionally pass, or fail the preliminary examination. Then the committee discusses the candidate’s exam in depth, and formally recommends a pass, conditional pass, or fail.

The committee also provides an overall written evaluation of the exam, summarizing the student’s strengths as well as areas for improvement. If the committee recommends a conditional pass or failure, the committee must summarize the reasons for this recommendation. The written evaluations are compiled by the committee chair, with input from committee members, prior to adjournment of the meeting.

Students who fail the preliminary exam have until the end of June of the following year to repeat the exam in its entirety. Students who fail the preliminary exam twice cannot continue in IPiB.

Students who receive a conditional pass will be given specific goals and a timeline by which those goals must be met. The student’s progress is reviewed at the next annual
committee meeting or as prescribed by the thesis committee. At any time, failure to achieve satisfactory progress may lead to dismissal from the Program.

The evaluation is discussed by the student and the thesis advisor and then given to the Coordinator to become a part of the student’s record.

3.10.3 Annual Progress Report Meetings: Every year following the attainment of dissertator status, students are required to give a report on their research progress and future plans to their thesis committees. The meetings must take place no later than May 31 of each academic year. Regular meetings held early in the year are encouraged to avoid exceeding this deadline and to minimize faculty scheduling conflicts. Once a meeting is scheduled, the student should advise the Coordinator of the date and time, and use the interdepartmental room reservation system to reserve a meeting room.

At least three committee members, including the thesis advisor, must be present at each annual progress report meeting, but students benefit more by having all five members present. The student must meet with any missing committee members separately to discuss and review the outcomes of the meeting and obtain their signatures before returning the Annual Progress Report Meeting Form to the Coordinator.

A two- to three-page, single-spaced summary of aims accomplished in the last year and future plans for the coming year should be distributed to all members of the student’s thesis committee no less than two days before the meeting. A page containing figures, tables, and references may be appended to the report. The student should prepare a 20- to 30-minute oral presentation summarizing progress made and plans going forward. Students are advised to allow at least an additional 30 minutes for discussion, which may occur during or after their presentations. It is common for the committee to ask the student to leave the room for a few minutes while the committee discusses its recommendations; students should not be concerned if they do.

After the oral presentation, the student and committee discuss the progress made and future plans, and complete the Annual Progress Report Meeting Form summarizing the discussion. The summary form is returned to the Coordinator and becomes part of the student's file.

Perceptive students will welcome these annual meetings as opportunities to apprise their committees regularly, since it is to no one's advantage to have unwarranted surprises at the final defense!

3.10.4 Thesis: Students are expected to carry out significant, original research during the entire period of their PhD training and to write a thesis based on this research. The thesis must be formatted according to the guidelines of the Graduate School, present evidence of a substantial experimental effort by the student, and reflect a strong intellectual contribution that meets all standards set by the student's thesis committee. If the work is the result of collaborative enterprises, the writing must clearly define those portions representing the student's own contribution. The thesis must also include a substantive
review of literature relevant to the project. It should be written with a high level of literary skill, such as would be found in leading journals in that research area.

The thesis must be completed and distributed to the members of the student’s thesis committee not less than two weeks before the date of the final oral examination. Students should be prepared to provide hard copies or electronic copies of the thesis, as preferred by individual committee members.

Publication of a PhD thesis is required, since it constitutes a permanent record of research and literary achievement. Students are responsible for knowing and meeting all thesis-filing deadlines for degree completion. The Graduate School website provides detailed instructions for the format, defense, and electronic depositing of theses at:

http://grad.wisc.edu/education/completedegree/ddd.html

3.10.5 PhD Warrant: Two months prior to an anticipated final oral exam date, the student must submit a “Request for MS or PhD Warrant” to the Coordinator, which is available on the IPiB website under “Frequently Used Forms.” This form initiates Graduate School and ECC processes that certify thesis committee membership and completion of degree requirements, resulting in the issuance of a formal “PhD Warrant.” Upon successful completion of the final examination, the student obtains the signatures of his or her thesis committee members, deposits his or her thesis, and schedules an appointment with the Graduate School for the final review with the signed warrant in hand. See Appendix H, “Checklist for Graduation,” for additional steps required for graduation.

3.10.6 Final Oral Exam: The final oral examination deals primarily with the thesis content. Students take the final exam only after all other degree requirements have been satisfied, including clearing their academic record of incomplete grades and progress grades (other than research credits).

Within IPiB, students traditionally begin their oral exam with a public seminar summarizing their research accomplishments and highlighting the significance to the field. The seminar is not graded. Afterwards, the students meet in a closed setting with their thesis committee and respond to questions. The thesis advisor can take part in the questioning, but may not actively steer the discussion or defend the research. The oral examination (not including the public seminar) is usually scheduled for up to two hours to allow ample time for the committee members to be satisfied with their individual evaluations. The student is then excused and, after deliberation, the members decide whether or not to endorse the degree completion by signing the PhD Warrant.

To pass the final examination, a student must receive no more than one dissenting vote from the thesis committee. A missing signature on the warrant is considered a dissenting vote. At the discretion of the student’s thesis committee, a student may repeat a failed final exam once.

If a committee member participates in the final oral exam remotely (e.g., via video chat), the committee chair or thesis advisor may, with that committee member’s permission, sign that committee member’s name and initial it.
3.11 Progress Toward Degree

3.11.1 Annual Progress Report Meetings: The purpose of the Annual Progress Report Meeting is to provide guidance and encouragement so the student can complete their PhD research in a timely manner. If, at any point, the thesis committee believes sufficient progress is not being made or is unlikely to be made, it may recommend the student’s dismissal from the Program.

3.11.2 Graduate School Five-Year Rule: Students have five years from the date of passing their preliminary exams to successfully complete a final oral examination and deposit their theses with the Graduate School. Students who fail to meet this deadline are required by the Graduate School to take another preliminary exam and be admitted to candidacy for a second time.

Exceptions to this rule must be requested in writing by the student’s thesis advisor to the Graduate School, explaining the circumstances of the delay. Students should contact the IPiB Coordinator for assistance.

3.11.3 Other Employment: Graduate students are not precluded from engaging in employment (including part-time or evenings/weekends) in addition to their graduate studies. IPiB students, however, must receive their thesis advisor’s consent to engage in outside employment if such employment may impede progress to the degree.

4. Guidelines for New PhD Students

4.1 Laboratory Rotations and Choosing a Thesis Advisor

Lab rotations are aimed at finding optimal matches between incoming students' research interests and IPiB faculty who share those interests. The NSOC facilitates the process of pairing students with potential thesis advisors and ensures the pairing mechanism is fair and works to everyone's best advantage. Students meet with the NSOC shortly after they arrive and are guided through the rotation procedures as outlined below.

Under rare circumstances, a student may be admitted directly to a faculty's research group. This typically arises from an introduction outside the normal admission process. Such students (“direct admits”) do not participate in laboratory rotations, but must meet the same application requirements as other students applying to the Graduate School and to IPiB. Direct admits are also required to participate in all Program orientation events the week before the fall semester in which they matriculate.

IPiB faculty will have the opportunity to meet incoming students and describe their research programs in a series of short presentations during orientation week. The Coordinator will contact faculty who have indicated that they have lab space and/or funding for new students to schedule these presentations. All new students are required to attend and strongly encouraged to schedule additional meetings with individual faculty during orientation week. Personal discussions about research opportunities, space, and funding are highly encouraged before students submit their
first rotation choices at the end of orientation week. Sample questions one might ask of a potential thesis advisor are listed in Appendix 10.F.

4.1.1 Laboratory Rotations: The first semester of a new student's graduate studies is divided into three laboratory rotation periods of about four weeks each. During each rotation, the student reports to an assigned lab and participates as a member of that research unit. Occasionally the NSOC also permits a fourth rotation in late December or early January if required for a favorable pairing. However, three rotations are generally sufficient (see 4.1.3) and provide a quick launch to the student's research career, which is a major aim of the process.

4.1.2 Rotation Assignments: Prior to Orientation Week, new students are given a list of IPiB faculty who have lab space and funding to take new students. By the end of Orientation Week, students submit a ranked list of three faculty members in whose labs they would like to do their first rotations. The process is repeated for the second and third rotations with updated space and funds availability if necessary.

The NSOC is very experienced in pairing students with compatible opportunities. It balances students’ requests with each lab's considerations for space and funding, and, in consultation with the appropriate faculty, matches students with labs for the first rotation. If a student repeatedly requests a particular assignment, the NSOC will facilitate that match as soon as rotation space allows.

4.1.3 Student Responsibilities: Rare is the student who enters with such a broad-based knowledge of biochemistry that he or she is ready to immediately focus with absolute certainty on a particular research niche. Selecting only what one knows precludes the possibility of what could be. New IPiB students are encouraged to participate in rotations that expose them to a variety of fields, research methodologies, and laboratory cultures. Each rotation, however, is a serious undertaking, requiring significant student initiative and responsibility.

New students should:

- Read about each lab beforehand, including in-depth reviews of research publications, technologies, and personnel lists. Check the IPiB website, too.

- Talk to multiple faculty and their lab members beforehand so they know of the students’ interest in their research areas, and so students can make informed decisions about the research directions they might like to pursue.

- Interact consistently and persistently with all members of the rotation lab. Curiosity, interest, and intelligent questions help faculty and their lab members evaluate the student and decide if the student is a good fit for their labs.

- Show up on time to all lab activities and be responsible and aggressive toward whatever project is assigned, even if this means working nights and weekends.
• Discuss what they are learning with other students and especially with the assigned faculty member. Ask about projects that might be available to new students who are assigned to that lab after rotations are completed. Ask about funding opportunities. Ask how many new students, including those from other programs, are under consideration for potential lab slots. Be proactive and determined in gathering information. This experience is part of your training to be a scientist.

4.1.4 Rotation Funding: For students who are not on a fellowship or training grant or are not direct admits, financial support is provided by the Program through the period of the first semester lab rotations. Once the thesis lab and advisor are selected, financial support becomes the responsibility of the thesis advisor.

The student should be assured that if admitted to a laboratory, and provided they are making appropriate progress in the Program, they will be supported regardless of their funding source.

4.1.5 Final Assignments: Near the end of the third rotation, students are asked by the NSOC for a ranked list of preferred thesis advisors from among those faculty members with whom the student had a rotation. The listed faculty members are then asked whether they might accept one or more of these students into their labs. The matching process tries to optimize student and faculty choices, with attention to the funding and space in each lab. Traditionally, the thesis lab assignments are announced by the IPiB Steering Committee just before the winter reception in mid-December, when lab groups welcome their new students into their labs.

4.1.6 Starting in Your New Lab: Newly assigned students report to their thesis advisors the Monday following announcement of the thesis lab assignments for guidance on registering for the spring semester, lab space assignments, and other lab orientation procedures. Students should expect to begin working in their new labs immediately.

4.2 Checklist for Degree Progress

The Graduate School and IPiB policies for achieving a PhD are outlined in Section 3 of this Handbook. However, the Program takes a keen interest in every student’s individual progress. The ECC, Program staff, thesis committees, and thesis advisors work continuously to help students achieve a timely completion of all requirements. The guidelines below summarize traditional procedures and timeframes. They are intended to help students anticipate Program deadlines and understand their personal responsibilities.
4.2.1 Year 1 - Fall Semester:
Students admitted to the Program begin their graduate careers in the fall semester. In the preceding spring and summer, the NSOC and Program staff send information about arriving on campus and Program orientation procedures.

During Orientation Week, Program staff and the NSOC will meet with all new students to describe enrollment procedures, the lab rotation process, selection of a thesis advisor, degree requirements, and Program expectations. By the end of the first week, everyone will be properly enrolled, payrolled for their stipend, registered for insurance, and prepared for their first lab rotation.

First semester coursework usually includes:

- Biochem 660, “Methods in Biochemistry” (2 credits)
- Biochem / BMC 701, “Professional Responsibility” (1 credit)
- Biochem 729.007, “From Atoms to Molecules” (3 credits)
- Biochem / BMC 990, Advanced Research (balance of credits to total 12)

Once assigned to their first-rotation labs by the NSOC, students should report to their rotation advisors (see 4.1 above), and attend all classes for which they are enrolled.

4.2.2 Year 1 - Spring Semester:
Students should meet with their thesis advisor (or the assigned NSOC co-chair if a lab assignment has not been finalized) in December to choose coursework for the coming semester.

Second semester coursework usually includes:

- BMC 720, “Biochemistry of the Cell” (3 credits)
- Biochem / BMC Advanced Seminar (1 credit)
- Breadth coursework requirements; major and / or minor coursework (variable credits)
- Biochem / BMC 990, Advanced Research (balance of credits to total 12)

In consultation with the thesis advisor, students discuss the general directions of their research projects, and then draft a plan for completion of all major and minor coursework. Note: Some courses are offered at irregular intervals or only during certain semesters.

Also during this semester, students consult with their thesis advisors to select and invite four members of the University graduate faculty to serve on their thesis committees, preferably prior to the end of the second semester or early in the summer before their second year of graduate study.
4.2.3 **Year 1 – Summer Session:**
Non-dissertators enroll for 2 Biochem / BMC 990 Advanced Research credits in the summer. Students who are trainees or fellows may need to register for more than two credits, depending on the terms of their traineeship or fellowship.

4.2.4 **Year 2 - Fall Semester:**
Third semester coursework usually includes:

- Breadth coursework requirements; major and / or minor coursework (variable credits)
- Biochem / BMC Advanced Seminar (1 credit)
- Biochem / BMC 990 Advanced Research (balance of credits to total 12)

4.2.5 **Year 2 - Spring Semester:**
Fourth semester coursework usually includes:

- Completion of any remaining courses for breadth requirements; major or minor requirements (variable credits)
- Biochem / BMC Advanced Seminar (1 credit)
- Biochem / BMC 990 Advanced Research (balance of credits to total 12)

Second-year students typically have their preliminary exams during this semester.

4.2.6 **Year 2 – Summer Session**
Dissertators register for 3 credits of 990 advanced research during the 8-week summer session. Non-dissertators continue to enroll for 2 credits in the summer session until they pass their preliminary exams.

4.2.7 **Year 3 and Beyond:**
Dissertators register for 2 credits of 990 advanced research and 1 seminar credit each fall and spring semester, and 3 credits of 990 research each 8-week summer session. At least one graded seminar presentation per year should go toward the Program’s seminar presentation requirement (3.3.2.).

Before May 31 of each academic year following the preliminary examination, students must convene their annual progress report meetings. Scheduling laggards will be warned that their registration authorization may be put on hold by the ECC if yearly meetings are not up-to-date. Perpetual laggards may face Program dismissal.

When the student and thesis advisor agree it is time to defend, the thesis committee discusses thesis format and content at the final yearly committee meeting, and the student obtains permission to begin writing. If necessary, students can schedule an extra pre-defense meeting for this purpose.
4.2.8 **Arranging Your Thesis Defense:**
Students must be registered full-time for the semester in which they intend to defend and deposit their thesis in order for the degree to post in that semester. If a student deposits his or her thesis during the “Degree Window Period,” the degree will post during the following semester but the student does not need to be enrolled in that semester.

Students should schedule their final thesis defense (one hour) and subsequent closed meeting (two hours) and submit the Request for Warrant approximately six weeks prior to the defense. The Request for Warrant is available on the IPiB website, https://ipib.wisc.edu/docs/forms/Request_for_PhD_Warrant.pdf. The Coordinator ensures that all degree requirements have been met, schedules meeting rooms, confirms arrangements with the student’s thesis committee, and submits the formal warrant request to the Graduate School.

Students should consult the Graduate School website for specific thesis format requirements and follow them:

http://grad.wisc.edu/currentstudents/doctoralguide

The Coordinator distributes thesis defense announcements to IPiB faculty, staff, students, and postdocs, and reminds committee members two weeks before, one week before, and the day of the final defense.

Students should visit the PhD Coordinator in the Graduate School (Room 217 Bascom Hall) for a thesis format review and to answer any questions about the approved use of tables, graphs, charts, etc. This simple pre-check may head off significant rewriting hassles after the defense!

As part of a successful defense, students should obtain the signatures of all committee members on the warrant.

Students must electronically deposit their theses, complete the online Graduate School surveys, and schedule an appointment with the Graduate School’s PhD Coordinator (262-2433) for the final review prior to the first day of the semester following the semester in which the student successfully defends. If defending near a degree deadline, students should remember that Graduate School appointment times fill rapidly near the end of each semester. All thesis corrections and revisions must be final **before** this review. No changes can be accepted on the copy that is submitted to the Graduate School after the final review.

Note: Students in BMC labs are required to submit a bound copy of their thesis to their department within 30 days of depositing the thesis with the Graduate School.

4.2.9 **Congratulations!! You are done! You are no longer a student. Good luck with your career. The future is yours. You have earned it!**
5. Graduation from IPiB with a Master’s Degree

The IPiB Graduate Degree Program does not admit students directly into MS candidacy. The following requirements apply only when a PhD student prematurely terminates from the program by student or committee request, and qualifies for this lesser degree. The academic standards of the Graduate School still apply.

5.1 **MS Course Requirements:**

5.1.1 **Required Coursework:** Coursework for admission (Section 2.2) and IPiB course requirements for the PhD (Section 3.1) must be met.

5.1.2 **Seminars:** After the first semester of graduate work, MS candidates must maintain continuous seminar enrollment each semester in one of the approved advanced (900-level) seminars.

5.1.3 **Graduate School Credit Requirements:** A minimum of 16 credits of graduate-level didactic or laboratory coursework taken at the University is required for the MS degree, and a minimum of 30 credits (including 990 research or seminars) must be completed, in total.

5.1.4 **Thesis Committee Determination:** Upon completion of the Graduate School’s and IPiB’s minimum requirements for a Master’s degree, whether or not to confer the degree is up to the student’s thesis committee and their determination of the student’s achievement of scholarly activity.

5.2 **MS Thesis committee**

In order to leave the IPiB program with an MS degree, the student must obtain a minimum of four signatures on the Graduate School warrant from among his or her thesis committee members, one of which must be from the student’s thesis advisor. For more information on this option, students are encouraged to speak with their thesis advisors and / or the Coordinator.

6. PhD with Joint Major in IPiB

In the joint PhD major program, the candidate must meet all above IPiB requirements, the other major department’s requirements, and the Graduate School requirements for a Minor Option A or Minor Option B (Section 3).

7. Joint MD-PhD Program

IPiB participates with the Medical School in offering a joint program for students wishing to complete both the MD and PhD degrees. The basic prerequisites and requirements for a PhD in this program are identical to those for a PhD with a major in IPiB (Section 3).
8. Minor Option A in Biochemistry

8.1 Admission to Minor Option A

8.1.1 Required Chemistry Courses: Candidates should have an undergraduate degree in biochemistry, chemistry, physics, or one of the biological or medical sciences. A minimum GPA of 3.0 (on a 4.0 scale) is required. In addition to meeting the general requirements of the Graduate School, coursework in biochemistry, physics, organic chemistry, and physical chemistry is required. The student can make up any course deficiencies during the first two years of graduate study.

8.1.2 Minor Advisor: A student must identify a member of the IPiB faculty to serve as the minor advisor. The minor advisor will advise the student on his or her minor program, and serve as a member of the student’s thesis committee.

8.2 Graduate Coursework for Minor Option A

8.2.1 General Biochemistry Course Requirements: A student must complete course Series 1 or course Series 2:

- Series 1: Biochem 507 and Biochem 508
- Series 2: A total of 6 credits selected from 600- / 700- level courses with approval of the ECC

Students with good preparation in chemistry will preferably select courses from Series 2 to meet this General Biochemistry Course Requirement.

8.2.2 Additional Biochemistry Courses: In combination with those credits earned for 8.2.1, a total of 16 graduate-level credits in advanced biochemistry courses (600-level or above) is required.

8.2.3 Transfer Credits: Transfer credit toward the Minor Option A in biochemistry may be given for biochemistry courses taken while at another graduate institution. Students should consult with their minor advisor and with the ECC for approval of these transfer credits. Transfer of six semester credits is the maximum allowed by IPiB.

8.3 Grades

A student must maintain a cumulative average of B or better in all required biochemistry courses, with no grade lower than BC. Courses taken for pass-fail, satisfactory-unsatisfactory, or for audit may not be used toward the Minor Option A.

8.4 Examination and Review Procedures

8.4.1 Course Completion: By the time a student is ready for his or her preliminary examination according to the timeline of the major program, all coursework for the Minor Option A should be completed.
8.4.2 **Exams:** No preliminary or final examination in biochemistry is required for Minor Option A students. The minor advisor is authorized to sign the preliminary warrant in the student's major program if the minor requirements (8.2 above) have been met.

9. **Personnel Issues**

9.1 **Changes in Laboratory Assignment**

If a student decides that their current laboratory assignment is not suited to their long-term interests, they should contact the Coordinator or the Chair of the Steering Committee for guidance. If the issues in the current laboratory cannot be resolved, an effort will be made to reassign the student to a new thesis advisor. Typically, to facilitate the student finding a new lab, the Chair of the Steering Committee will contact professors within IPiB who have expressed an interest in accepting a new student and whose research interests are consistent with those of the student. The Chair of the Steering Committee will also discuss the matter with the current thesis advisor.

Thereafter, the student will participate in a one-month rotation to discover if the new laboratory and advisor are acceptable to both parties (additional rotations might be required to find an appropriate match). If a change in laboratory occurs prior to the preliminary examination, that examination will be postponed for no more than one year. This will allow for generation of sufficient preliminary data in the new laboratory to support a written research proposal and oral examination.

9.2 **Grievances and Appeals** (adapted from the Graduate School Academic Policies and Procedures)

If a student feels unfairly treated or aggrieved by faculty, staff, or another student, the University offers several avenues to resolve the grievance. Students’ concerns about unfair treatment are best handled directly with the person responsible for the objectionable action. If the student is uncomfortable making direct contact with the individual(s) involved, they should contact their thesis advisor or the person in charge of the unit where the action occurred (program or department chair, section chair, lab manager, etc.).

Graduate School Appeal Process:

An official review of procedures can be initiated by the Graduate School if a student feels that their grievance was not appropriately handled or resolved at the program/department or school/college level or through consultation with other resources listed on the Graduate School’s website. Initial contact may be made through the Associate Dean in the student’s division (Arts and Humanities, Biological Sciences, Physical Sciences, or Social Studies), 608-262-1044, or through the Assistant Dean of Admissions and Academic Services (AAS), 608-262-2433.

If the student chooses to file an official appeal of a grievance decision, they should consult with the Assistant Dean of AAS. Then, if the student is still not satisfied with the initial appeal to the Graduate School Associate Deans, they may make a final appeal to the Graduate Faculty Executive Committee (GFEC) within 30 days of the date of the above written decision.
9.3 Harassment (taken from the Graduate School Academic Policies and Procedures)

All students are encouraged to report harassment of any kind, whether it is by a faculty or staff member or another student. Students may contact the Division of Student Life in person (75 Bascom Hall), email dean@studentlife.wisc.edu, call (608) 263-5700 and ask to speak to the Dean on Call, or fill out a Bias Incident Reporting Form at students.wisc.edu/pdf/bias form.pdf. If the harasser is a student, University disciplinary action may be possible if the harassment involves conduct or behavior beyond words and if the person who is being harassed wants disciplinary action. Other informal means are available to confront offenders. The goal is that students be heard and helped if there is a problem.

If students feel that they may be the victim of sexual harassment, they should talk to someone they trust about the situation. Sexual harassment may or may not involve a tangible injury (e.g., economic loss, lowered grades). A sexually harassing environment, in and of itself, may constitute a harm. Students may feel embarrassed or worried that they did something to provoke the unwanted behavior, but they have the right to pursue their education or perform their job in an environment free from this type of interference.

If students feel comfortable taking this step, they should let the offender know that the behavior is unwelcome by telling him or her directly or in writing. Students need not face the situation alone. Schools, colleges, and divisions have designated Sexual Harassment Contact Persons who are available to anyone wishing to inquire about sexual harassment, discuss an incident, or receive information about options for resolving complaints. To contact a resource for advice please visit oed.wisc.edu/sexualharassment/assault.html. Students may also contact their dean, department chair, supervisor, or labor representative. Students may consult in private with someone from the Division of Student Life to discuss their situation and review options.

Campus resources:
- Office for Equity and Diversity, 179A Bascom, (608) 263-2378; WTRS: 7-1-1; oed.wisc.edu
- Division of Student Life, 75 Bascom Hall, (608) 263-5700 (TTY (608) 263-2400), dean@studentlife.wisc.edu
- UW-Madison Police and Security (for personal safety reasons; non-emergency), 1429 Monroe Street, (608) 262-2957 (TTY (608) 262-2957)
- Bias Incident Reporting Form, students.wisc.edu/pdf/bias form.pdf.

Please visit http://grad.wisc.edu/education/acadpolicy/guidelines.html#99 for the latest policies and guidelines.

9.4 Research Misconduct

The University is bound ethically and legally to respond to allegations of scientific misconduct in a fair, objective and timely manner. It has established a policy for dealing with allegations of misconduct in scholarly research as described in (Faculty Policy II-314). Graduate students and research associates who witness research wrongdoing or misconduct should report such behavior to their faculty supervisor or, if necessary, the department chair. In cases where the department
chair is the target or is conflicted, the witness(es) should contact the Associate Vice Chancellor for Research Policy, in the Graduate School, 608-262-1044. Faculty supervisors should discuss the situation with their department chair, who in turn should to discuss the situation with the Associate Vice Chancellor for Research Policy. At any time in this process, and particularly if a witness does not believe that due attention has been given to a written report of wrongdoing, the Associate Vice Chancellor for Research Policy may be consulted and will serve as the college’s main point of contact in such matters.

Please visit http://grad.wisc.edu/research/policyrp/researchmisconduct.html for more information.

10. Appendices

10.A Higher Learning Goals
10.B IPiB Faculty, Academic Year 2017-18
10.C Standing IPiB Committees, Academic Year 2017-18
10.D IPiB Staff, Academic Year 2017-18
10.E Summer Rotations
10.F Organizing and Presenting a Seminar
10.G Questions to Ask Prospective Thesis Advisors
10.H Timeline to Graduation
10.I Proposed Standards for Examining Dissertations
10.J Checklist for Graduation
APPENDIX 10.A Higher Learning Goals

1. Gain a broad understanding of the biochemical principles that underlie all biological processes
2. Become aware of the current limitations of the state of understanding of this discipline and the strategies that are required to advance the field
3. Formulate and design new approaches that extend and apply biochemical processes
4. Conduct independent research using a diverse breadth of biochemical processes
5. Think critically to address research challenges using a broad range of the theories, research methods, and approaches to scientific inquiry
6. Collaborate with investigators within the program, university, and beyond since current future advances in the biomolecular sciences demand interdisciplinary skills
7. Foster professional and ethical conduct in the sciences, including but not limited to: exposition of the scientific method; ethical design of experimental protocols; reproducibility in science; professional behavior in industrial, government, and academic settings; documentation of scientific results; communication to other scientists and the public; peer review; and confidentiality
8. Develop communications skills that enable the articulation of research to fellow scientists and non-scientists
9. Explore career development opportunities in industry, government and academia to realize professional goals and paths
10. Develop teaching and mentoring skills in both lecture and laboratory settings
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Phone</th>
<th>Office</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amasino, Richard M.</td>
<td>265-2170</td>
<td>215B Biochemistry Labs</td>
<td>amasino@biochem.wisc.edu</td>
</tr>
<tr>
<td>Ansari, Aseem Z.</td>
<td>265-4690</td>
<td>315C Biochemistry Labs</td>
<td>ansari@biochem.wisc.edu</td>
</tr>
<tr>
<td>Attie, Alan D.</td>
<td>262-1372</td>
<td>543A Biochemistry Labs</td>
<td>attie@biochem.wisc.edu</td>
</tr>
<tr>
<td>Audhya, Anj W.</td>
<td>262-3761</td>
<td>5214A BSB</td>
<td>audhya@wisc.edu</td>
</tr>
<tr>
<td>Bednarek, Sebastian Y.</td>
<td>263-0309</td>
<td>215C Biochemistry Labs</td>
<td>sybednar@wisc.edu</td>
</tr>
<tr>
<td>Brow, David A.</td>
<td>262-1475</td>
<td>4204B BSB</td>
<td>dabrow@wisc.edu</td>
</tr>
<tr>
<td>Butcher, Samuel E.</td>
<td>263-3890</td>
<td>141E Biochemistry Labs</td>
<td>sebutcher@wisc.edu</td>
</tr>
<tr>
<td>Chanda, Baron</td>
<td>265-3936</td>
<td>9457 WIMR II, 1111 Highland Avenue</td>
<td>chanda@wisc.edu</td>
</tr>
<tr>
<td>Clagett-Dame, Margaret</td>
<td>262-3450</td>
<td>241E Biochemistry Labs</td>
<td>dame@biochem.wisc.edu</td>
</tr>
<tr>
<td>Coon, Joshua J.</td>
<td>263-1718</td>
<td>4422 Genetics - BSB Biotechnology Center</td>
<td>jcoon@chem.wisc.edu</td>
</tr>
<tr>
<td>Cox, Michael M.</td>
<td>262-1181</td>
<td>341B Biochemistry Labs</td>
<td>cox@biochem.wisc.edu</td>
</tr>
<tr>
<td>Craciun, Gheorghe</td>
<td>265-3391</td>
<td>405 Van Vleck Hall</td>
<td>craciun@wisc.edu</td>
</tr>
<tr>
<td>Craig, Elizabeth A.</td>
<td>263-7105</td>
<td>441E Biochemistry Labs</td>
<td>ecrraig@wisc.edu</td>
</tr>
<tr>
<td>Denu, John M.</td>
<td>265-1859</td>
<td>2178 WID</td>
<td>jmdenu@wisc.edu</td>
</tr>
<tr>
<td>Dvinge, Heidi</td>
<td>265-1859</td>
<td>4214A BSB</td>
<td>dvinge@wisc.edu</td>
</tr>
<tr>
<td>Engin, Feyza</td>
<td>262-8667</td>
<td>6260B BSB</td>
<td>fengin@wisc.edu</td>
</tr>
<tr>
<td>Fox, Brian G.</td>
<td>262-9708</td>
<td>141B Biochemistry Labs</td>
<td>bgfox@biochem.wisc.edu</td>
</tr>
<tr>
<td>Fox, Catherine</td>
<td>262-9370</td>
<td>5204C BSB</td>
<td>cfox@wisc.edu</td>
</tr>
<tr>
<td>Friesen, Paul D.</td>
<td>262-7774</td>
<td>721A Bock Labs</td>
<td>pfriesen@wisc.edu</td>
</tr>
<tr>
<td>Harrison, Melissa</td>
<td>262-2382</td>
<td>6204A BSB</td>
<td>mnharrison3@wisc.edu</td>
</tr>
<tr>
<td>Hayes, Colleen E.</td>
<td>263-6387</td>
<td>2260 BSB</td>
<td>cehayes@wisc.edu</td>
</tr>
<tr>
<td>Henzler-Wildman,</td>
<td>890-1094</td>
<td>471C Biochem Labs</td>
<td>henzlerwildm@wisc.edu</td>
</tr>
<tr>
<td>Katherine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holden, Hazel M.</td>
<td>262-4988</td>
<td>3424A BSB</td>
<td>hmholden@wisc.edu</td>
</tr>
<tr>
<td>Hoskins, Aaron</td>
<td>890-3101</td>
<td>2214A BSB</td>
<td>ahoskins@wisc.edu</td>
</tr>
<tr>
<td>Hull, Christina M.</td>
<td>265-5441</td>
<td>5204B BSB</td>
<td>cmhull@wisc.edu</td>
</tr>
<tr>
<td>Name</td>
<td>Phone</td>
<td>Extension</td>
<td>Email</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Keck, James L.</td>
<td>263-1815</td>
<td>6214A BSB</td>
<td>jlkeck@wisc.edu</td>
</tr>
<tr>
<td>Kiley, Patricia J.</td>
<td>262-6632</td>
<td>4204C BSB</td>
<td>pjkiley@wisc.edu</td>
</tr>
<tr>
<td>Kimble, Judith E.</td>
<td>262-6188</td>
<td>341E Biochemistry Labs</td>
<td>jekimble@wisc.edu</td>
</tr>
<tr>
<td>Landick, Robert C.</td>
<td>265-8475</td>
<td>5441 Microbial Sciences Building</td>
<td>landick@bact.wisc.edu</td>
</tr>
<tr>
<td>Lewis, Peter W.</td>
<td>316-4388</td>
<td>2178 WID</td>
<td>pwlewis2@wisc.edu</td>
</tr>
<tr>
<td>Markley, John L.</td>
<td>263-9349</td>
<td>171A Biochemistry Labs</td>
<td>markley@nmrfam.wisc.edu</td>
</tr>
<tr>
<td>Martin, Thomas F.J.</td>
<td>263-2427</td>
<td>241B Biochemistry Labs</td>
<td>tfmartin@wisc.edu</td>
</tr>
<tr>
<td>Merrins, Matthew J.</td>
<td>256-1901</td>
<td>413A VA Hospital</td>
<td>merrins@wisc.edu</td>
</tr>
<tr>
<td>Mitchell, Julie</td>
<td>890-0365</td>
<td>2104D Biochemistry</td>
<td>jcmitchell@wisc.edu</td>
</tr>
<tr>
<td>Mosher, Deane</td>
<td>262-1576</td>
<td>5428A BSB</td>
<td>dfm1@medicine.wisc.edu</td>
</tr>
<tr>
<td>Ntambi, James M.</td>
<td>265-3700</td>
<td>415B Biochemistry Labs</td>
<td>ntambi@biochem.wisc.edu</td>
</tr>
<tr>
<td>Pagliarini, David J.</td>
<td>890-3254</td>
<td>2269 MIR</td>
<td>pagliarini@wisc.edu</td>
</tr>
<tr>
<td>Palmenberg, Ann C.</td>
<td>262-7519</td>
<td>527B Bock Labs</td>
<td>acpalmen@wisc.edu</td>
</tr>
<tr>
<td>Pike, J. Wesley</td>
<td>262-8229</td>
<td>543D Biochemistry Labs</td>
<td>john.pike@wisc.edu</td>
</tr>
<tr>
<td>Ralph, John</td>
<td>890-2429</td>
<td>2129 WEI</td>
<td>jralph@wisc.edu</td>
</tr>
<tr>
<td>Raman, Srivatsan</td>
<td>890-1036</td>
<td>441B Biochemistry Labs</td>
<td>sraman4@wisc.edu</td>
</tr>
<tr>
<td>Rayment, Ivan</td>
<td>262-0437</td>
<td>3424B BSB</td>
<td>ivan_rayment@biochem.wisc.edu</td>
</tr>
<tr>
<td>Record, M. Thomas Jr.</td>
<td>262-5332</td>
<td>3214A BSB</td>
<td>record@chem.wisc.edu</td>
</tr>
<tr>
<td>Romero, Philip</td>
<td>262-5943</td>
<td>3204B BSB</td>
<td>promero2@wisc.edu</td>
</tr>
<tr>
<td>Senes, Alessandro</td>
<td>890-2584</td>
<td>415C Biochemistry Labs</td>
<td>senes@wisc.edu</td>
</tr>
<tr>
<td>Sheets, Michael D.</td>
<td>262-9452</td>
<td>5260B BSB</td>
<td>mdsheets@wisc.edu</td>
</tr>
<tr>
<td>Sussman, Michael R.</td>
<td>262-8608</td>
<td>2320 Genetics - Biotechnology Center</td>
<td>msussman@wisc.edu</td>
</tr>
<tr>
<td>Venturelli, Ophelia</td>
<td>263-7017</td>
<td>3204C BSB</td>
<td>venturelli@wisc.edu</td>
</tr>
<tr>
<td>Wang, Yong</td>
<td>263-2813</td>
<td>4057 WIMR 1, 1111 Highland Avenue</td>
<td>ywang@medicine.wisc.edu</td>
</tr>
<tr>
<td>Weibel, Douglas B.</td>
<td>890-1342</td>
<td>6424A BSB</td>
<td>weibel@biochem.wisc.edu</td>
</tr>
<tr>
<td>Wickens, Marvin P.</td>
<td>262-8007</td>
<td>315B Biochemistry Labs</td>
<td>wickens@biochem.wisc.edu</td>
</tr>
<tr>
<td>Wildonger, Jill</td>
<td>890-4619</td>
<td>2204B BSB</td>
<td>wildonger@wisc.edu</td>
</tr>
</tbody>
</table>
APPENDIX 10.C Standing IPiB Committees, Academic Year 2017-2018

Steering Committee

Composition

| 4 - 5 | Biochemistry faculty |
| 2 - 3 | Biomolecular Chemistry faculty |

The above faculty include the chairs of the Admissions and Recruiting Committee, New Student Orientation Committee, Examination and Certification Committee, and Student/Faculty Liaison Committee. The Program Director is appointed by agreement between the Chairs of the Departments of Biochemistry and Biomolecular Chemistry, and serves as Chair of the Steering Committee.

Responsibilities

i. Oversight of program and policy recommendations for approval by two departmental faculties
ii. Confirmation of thesis laboratory assignments
iii. Oversight of development of programmatic initiatives that will foster interaction among faculty and students in the program, such as faculty lunches to hear about each other’s research or joint faculty meetings
iv. All other issues related to the program that are not dealt with by other committees.

Admissions Committee

Composition

| 4 - 5 | Biochemistry faculty |
| 3 - 4 | Biomolecular Chemistry faculty |

Chair is appointed from among the IPiB faculty members and serves on the Steering Committee.

Responsibilities

i. Determine the target size of the new recruitment class from a survey that is conducted each December.
ii. Review graduate applications in a timely manner. Each application is scored by multiple faculty members on the admissions committee to produce a ranked listed of candidates. Candidates will then be selected for interview based on the rankings and on the projected class size. Ideally, all application reviews will be completed by mid-December.
iii. The committee should create a ranked spreadsheet with detailed information on all candidates to hand off to the recruitment chairs.

iv. Determine a short list on promising international candidates for interviews

v. Manage selection and distribution of promotional materials for the program with the admissions coordinator

vi. The chair will serve on a committee comprised of the chairs of admissions and recruitment to make final admissions decisions.

Recruiting Committee

Composition

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Co-chairs are selected from among the faculty members, one from each department. One co-chair is appointed to the Steering Committee</td>
</tr>
</tbody>
</table>

Responsibilities

i. Determine the dates for interviews (typically 2-3 weekends in February and March)

ii. Coordinate current students involved in recruitment

iii. Recruit faculty for hosting recruitment dinners

iv. Invite and schedule candidates for interviews

v. Coordinate all student visits

vi. Solicit feedback on candidates and make final admissions decisions. Final admissions decisions require approval from both chairs, and decisions should be made as quickly as possible after student visits

vii. Interview international candidates who are unable to visit in person (i.e. students who are abroad) via Skype. As with admissions decisions from (6), final admission requires approval from both chairs

viii. Coordinate faculty contacts with admitted students

ix. Write flex funds application to secure recruitment funds for the next year

x. The chairs will serve on a committee comprised of the chairs of admissions and recruitment to make final admissions decisions

New Student Orientation Committee (NSOC)

Composition

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 3</td>
<td>Biochemistry faculty</td>
</tr>
<tr>
<td>1 - 2</td>
<td>Biomolecular Chemistry faculty</td>
</tr>
</tbody>
</table>

Co-chairs are selected from among the faculty members, one from each department. One co-chair is appointed to the Steering Committee

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trainer</td>
</tr>
</tbody>
</table>
Responsibilities

i. Supervise orientation activities and advise students prior to assignment to thesis laboratory

ii. Organize rotations and assignment of students to laboratories

Examination and Certification Committee (ECC)

Composition

<table>
<thead>
<tr>
<th></th>
<th>Biochemistry faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Biomolecular Chemistry faculty</td>
</tr>
<tr>
<td>Co-chairs are selected from among the faculty members, one from each department. One co-chair is appointed to the Steering Committee</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Trainer</td>
</tr>
</tbody>
</table>

Responsibilities

i. In collaboration with the Coordinator, ensure that students are effectively tracked to assure timely completion of the degree requirements

ii. Identify and inform students of undergraduate course work deficiencies that must be rectified before students can achieve dissertator status

iii. Approve the composition of first-year students' proposed thesis committees, assuring that they meet program requirements

iv. Select the chair of each student's thesis committee for the purposes of the preliminary examination. The chair must be an IPiB member other than the student's thesis advisor

v. For any conditional passes or failures of the Preliminary Examination, monitor students' satisfactory completion of the examination

vi. Review and rule on requests for substitutions to the pre-approved seminar courses for satisfaction of the seminar requirement

Student-Faculty Liaison Committee (SFLC)

Composition

<table>
<thead>
<tr>
<th></th>
<th>Biochemistry faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – 3</td>
<td></td>
</tr>
<tr>
<td>1 – 2</td>
<td>Biomolecular Chemistry faculty</td>
</tr>
<tr>
<td>Chair is selected from among the faculty members of either department. and is appointed to the Steering Committee</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Trainer</td>
</tr>
<tr>
<td>8 – 12</td>
<td>Students</td>
</tr>
<tr>
<td>Co-chair and Vice Co-chair are elected by the students. Other student members should include student representatives to other IPiB committees and be distributed among members of laboratories of Biochemistry and Biomolecular Chemistry.</td>
<td></td>
</tr>
</tbody>
</table>
Responsibilities

i. Serve as a liaison between faculty and students, communicating the wishes, concerns, and problems of the graduate student population to the faculty

ii. Promote educational and social interaction among students in the program

iii. Develop programmatic initiatives that foster interaction among faculty and students in the Program, such as retreats, student-hosted seminars, and student-run journal clubs

iv. Promote interaction with the community through outreach and service

Curriculum Review Committee

Composition

1 – 2	Biochemistry faculty
1	Biomolecular Chemistry faculty
	Co-chairs are selected from among the faculty members of each department, and are appointed to the Steering Committee
1	Student

Responsibilities

i. Provide a systemic review of courses approved for the IPiB graduate curriculum. As needed, propose development, assessment, and/or revision of the IPiB curricula. Receive and review proposals for new graduate courses. Make recommendations regarding assignment of graduate teaching responsibilities, assessment of outcomes, and improvements needed arising from curriculum review to the IPiB Steering Committee for review and transmittal to the chairs of Biochemistry and Biomolecular Chemistry.
APPENDIX 10.D IPiB Staff, Academic Year 2017-18

Graduate Student Services
Senior Student Services Coordinator – Recruiting and Admissions
Elyse Meuer
Department of Biomolecular Chemistry
Room 1135 Biochemistry
420 Henry Mall
608-261-1492
eemeuer@wisc.edu

Graduate Student Services Coordinator – Current Students, Alumni
Kate Ryan
Department of Biochemistry
Room 1142F Biochemistry
420 Henry Mall
608-265-2281
cryan7@wisc.edu

Payroll and Benefits – Department of Biomolecular Chemistry
Tina Manke
Room 1135 Biochemistry
420 Henry Mall
608-265-4320
tmanke@wisc.edu

Payroll and Benefits – Department of Biochemistry
Stefanie Lannoye
Room 111 Biochemistry Labs
433 Babcock Drive
608-262-7206
slannoye@wisc.edu

Kallee Schneider
Room 111 Biochemistry Labs
433 Babcock Drive
608-890-2385
kallee.radtke@wisc.edu

Examination and Certification Committee (ECC)
Richard Amasino
Department of Biochemistry
Room 215B Biochemistry Labs
433 Babcock Drive
608-265-2170
amasino@biochem.wisc.edu

David Brow
Department of Biomolecular Chemistry
4204B Biochemical Sciences Building
440 Henry Mall
608-262-1475
dabrow@wisc.edu

New Student Orientation Committee (NSOC)
Paul Friesen
Department of Biochemistry
Room 721A Bock Labs
1525 Linden Drive
608-262-7774
pfriesen@wisc.edu

Michael Sheets
Department of Biomolecular Chemistry
Room 5260B Biochemical Sciences Building
440 Henry Mall
608-262-9452
mdsheets@wisc.edu
APPENDIX 10.E Summer Rotations

Occasionally students are interested in coming to Madison prior to the start of the fall semester to participate in a summer rotation. Unlike the three fall rotations that are funded by IPiB, the cost of this research experience (stipend, fringe benefits, and lab supplies) must be covered by the faculty who hosts the incoming student. As a consequence, IPiB does not formally support summer rotations, though it can assist students who are interested in finding a suitable mentor.

Note that international students cannot participate in summer rotations because of the length of time required for visa approval.

Those who wish to undertake a summer rotation must first contact the New Student Orientation Committee (NSOC) by no later than May 15 to obtain a list of faculty who are willing to support a student during the summer session. There are no guarantees that faculty will be available for summer rotations. Students may contact those professors who have indicated interest and determine whether a summer research project is mutually beneficial.

If a summer lab is found, the NSOC will review and approve that summer rotation. These negotiations must be finalized before May 31. The Graduate School has strict rules that require students participating in summer rotations to enroll in the summer session prior to its beginning and to be present on campus at its start. The Graduate School must be informed of summer admissions in the first week of June.

A summer rotation should be viewed as a learning opportunity for the student and perhaps an opportunity for the faculty member to advance a research project. Historically, there is no correlation between summer rotations and the final laboratory assignment.

Important notes:

1. A summer rotation cannot substitute for one of the required three fall rotations.
2. Participation in a summer rotation does not place any obligation on the student to join that laboratory.
3. Participation in a summer rotation does not increase the probability of the student joining that laboratory in the fall.
4. A summer rotation cannot be used to pressure a student to join a research program. Final assignment to a laboratory is the responsibility of the NSOC.
APPENDIX 10.F Organizing and Presenting a Seminar

Tips on seminar information content

1. Think of the story you want to tell and organize your talk accordingly. The organization does not need to be historical, and, most times, the talk is much more interesting if it is not historical. It is more engaging to introduce a slide as “they wanted to ask a particular question,” rather than “next they did this experiment.”

2. The introduction of the seminar should 1) highlight the problem/ question that you are addressing, 2) provide the state of the field (usually presented as a model), 3) introduce the questions that you will address, 4) share the new information that the papers provide, and 5) explain how the data enhances or disapproves the model. You do not need to provide every detail you know; just those that are necessary to make your points. You do not want to overload the audience.

3. Always make a verbal transition between slides. The transition should logically summarize the slide you have just finished and introduce the next slide. Using the title of the upcoming slide is a good way to facilitate this.

4. Develop slides to introduce methods that are critical to understanding experiments that you are presenting. For example, if a “Chip” assay is being used, then explain the assay in a slide right before you show data.

5. Provide details when the listener needs to know that information.

6. The length of the talk should be at least 45 minutes, leaving additional time for questions. A rough estimate for the number of slides would be in the neighborhood of 38 to 42 slides depending on your slide content.

7. The talk should have, on average, an introduction of the topic, data (taken from papers if a literature seminar), a summary, a future directions slide, and an acknowledgement slide for those who helped you.

8. In presenting data in a literature seminar, be critical. If you think that the conclusions are not supported by the data, then say so.

Tips for Slides
The Biochem 660 syllabus currently includes tips and techniques for making effective slides. If students have questions, they are encouraged to talk with the Biochemistry Media Lab.
APPENDIX 10.G Questions to Ask Prospective Thesis Advisors

1. How many students are you planning to take all together?

2. What thesis projects would be available to me if I were to join your lab?

3. Would these projects expose me to a variety of different experimental approaches?

4. In general, how available will you be to answer questions I might have?

5. What is your philosophy regarding the amount of guidance the thesis advisor should provide to a student during preparation of the thesis proposal, literature seminars, thesis, etc.?

6. What are your expectations for the amount of time I should spend each day/week in the lab?

7. What regularly scheduled activities (e.g., group meetings, joint group meetings, research clubs) does your lab participate in that provide an opportunity to get outside input on my research project and to hear about the work of other students and postdocs?

8. Do you encourage your students to attend seminars and journal clubs, including those that may be outside of their field of research?

9. Do students in your lab have the opportunity to attend scientific meetings where they can interact with researchers from other institutions?

10. Do you include your graduate students in professional activities that will familiarize them with their field of research, such as reviewing manuscripts and meeting with visiting speakers?

11. How long do you think it should take me to get my PhD degree?

12. What are your former graduate students doing now?

13. What is your general philosophy of graduate training and what goals do you have for your graduate students?

Many of these questions are not simple and may not elicit a quick answer. However, any faculty member should be willing to discuss these important issues with you. You may also want to discuss these issues with any students that are currently in the prospective advisor’s lab. This list is by no means complete; you should spend some time thinking about what is most important to you in your graduate training.
APPENDIX 10.H Timeline to Graduation

IPiB - Integrated Program in Biochemistry at the University of Wisconsin, Madison

- **Rotations**: IPiB students carry out three rotations in any of the ~50 program labs in the first semester.
- **Thesis research**: Upon completion of rotations, thesis labs are chosen and thesis research begins.
- **Courses**: Coursework includes formal classes in biochemical techniques, professional scientific development, and the physical and biological sciences. Dozens of courses allow curricula to be tailored to each student's interests and needs. A typical schedule is:
 - **First semester**
 - Graduate Biochemistry
 - Professional Responsibility
 - Biochemical Techniques
 - **Second semester**
 - Biochemistry of the Cell
 - Biological or Physical Science
 - Elective
 - **Third semester**
 - Biological or Physical Science
 - Elective

- **Seminars**: IPiB students enroll in a seminar each semester once thesis research begins. Presentations in three seminars are given during a student's graduate training.
- **Committee meetings**: Committee meetings occur annually.
- **Preliminary examination**: The preliminary examination occurs prior to the end of the second year. The student writes an NIH-style grant proposal based on his/her research and defends it before a panel of faculty.
- **Teaching**: Each IPiB student will serve as a student teacher in two courses during the second and third year.
- **Thesis defense**: IPiB students write a formal thesis and defend it at the end of their graduate study. The timeline for defense will depend upon many factors but the defense typically occurs after 4-5.5 years.
APPENDIX 10.I Proposed Standards for Examining Dissertations

An acceptable dissertation completed in partial fulfillment of the PhD degree at the University of Wisconsin-Madison must have the following attributes, as recognized by the student’s dissertation committee:

1) **Focus:** A dissertation must clearly articulate a research problem or problems, a question or questions. It must specify the limits of the dissertation’s investigation with respect to theory, knowledge, or practice within the field of study.

2) ** Appropriateness:** The methods and techniques applied in the execution of the dissertation must be recognized as appropriate to the subject matter and as fitting, original, and/or aesthetically effective.

3) ** Clarity:** The dissertation should communicate complex ideas in a form and manner that is clear and understandable to area specialists and, as appropriate, to readers beyond the specialty area.

4) ** Durability:** The description of the research and its major conclusions should be in a durable form (written or otherwise capable of being permanently archived).

5) ** Novelty:** The dissertation should embody scholarship that makes a substantive contribution to the field of study. The ideas, concepts, designs, and/or performances should move beyond the current boundaries of knowledge within the field of study.

6) ** Connectedness:** The dissertation should demonstrate a professional level of familiarity with, and understanding of, contemporary work in the field.

7) ** Quantity:** The dissertation should demonstrate an appropriately comprehensive investigation of the student’s research area or artistic form.

8) ** Documentation and Replicability:** Documentation in the dissertation should be sufficiently thorough and of an appropriate standard and made available to ensure that the dissertation provides a useful starting point or reference for subsequent researchers, scholars and/or artists.

9) ** Professionalism:** A dissertation should reflect high ethical and professional standards.

In developing these criteria, we drew on “The University of Melbourne Additional Information for Examiners when a Candidate is Submitting a Dissertation and Creative Work for an MPhil or Masters by Research Degree.” In addition, we drew on the graduate level learning goals adopted by the UW-Madison Graduate Faculty Executive Committee on November 14, 2014.
APPENDIX 10.J Checklist for Graduation *

Student Checklist for Final Defense and Graduation

_____ 1. Confirm with the Graduate Coordinator completion of degree requirements (recommended at least two semesters before anticipated graduation)

_____ 2. Schedule final exam with committee; livestream public seminar?

_____ 3. Request warrant no less than 6 weeks prior to exam date

_____ 4. Apply to graduate

_____ 5. Review Completing Your Degree on the Graduate School website

_____ 6. Review Guide to Preparing Your Doctoral Dissertation on the Graduate School website

_____ 7. Circulate thesis to thesis committee 2 weeks before exam date

_____ 8. Complete and submit Summary of Accomplishments

_____ 9. Determine thesis deposit date

_____ 10. Grade change form needed? Bring to final defense

_____ 11. Defend; get Committee members’ signatures on final warrant

_____ 12. Complete Online Doctoral Surveys

_____ 13. Deposit dissertation*, final warrant, and certificates of completion of Online Doctoral Surveys; OR deposit dissertation*, schedule exit interview with Graduate School, and bring final warrant and certificates of completion of Online Doctoral Surveys to interview

* Students from BMC labs are required to submit a bound copy of their theses to the Graduate Student Coordinator in the BMC office within one month of depositing their theses with the Graduate School