Cracking the Code of Coenzyme Q Biosynthesis

Photo of Dave PagliariniCoenzyme Q (CoQ) is a vital cog in the body’s energy-producing machinery, a kind of chemical gateway in the conversion of food into cellular fuel. But six decades removed from its discovery, scientists still can’t describe exactly how and when it is made.

Dave Pagliarini, associate professor of biochemistry and Integrated Program in Biochemistry faculty member, says the list of unknowns is daunting. How does it migrate around in the cell? How does it get used up and replenished? What genes and proteins are responsible for CoQ dysfunction? Why does its presence decline as people age?

Pagliarini, also director of metabolism at the Morgridge Institute for Research, and his group are dedicated to chipping away at many of these knowledge gaps in CoQ production and in understanding the role of CoQ deficiency in human disease. CoQ deficiencies are implicated in scores of diseases, including liver and lung failures, muscle weakness, deafness and many brain disorders such as Parkinson’s and cerebellar ataxia. The coenzyme is almost exclusively produced within the body and is often very difficult to replenish through nutritional supplements.

Against this backdrop, the Pagliarini lab is developing new tools to shed light on CoQ function, primarily by finding and defining proteins that have a direct link to the chemical. In the past month, Pagliarini’s team has published three collaborative papers that gather multiple layers of information on cells where proteins have been manipulated.

“A fundamental challenge in biology lies in connecting the many ‘orphan’ proteins in our cells with specific biological processes, such as CoQ biosynthesis,” says Pagliarini. “Once we have a handle on their functions, a second challenge is to devise ways to manipulate the activity of these proteins, pharmacologically or otherwise, to control key biological processes and, ultimately, improve health.”

Research published in the journals Cell Systems (Dec. 13), Molecular Cell (Dec. 7) and Cell Chemical Biology (Nov. 29) all reveal new clues to coenzyme Q production and function.

Read about the findings from these three papers at the link below.

URL: https://biochem.wisc.edu/news/2018/news-pagliarini-coenzyme-q-2018-01-05