Biochemistry assistant professor and Integrated Program in Biochemistry (IPiB) faculty member Srivatsan “Vatsan” Raman has received a Director’s New Innovator Award from the National Institutes of Health (NIH). The $2.2 million-grants fund high-risk, high-reward research performed by early stage investigators. Compared to traditional NIH grants, the New Innovator Award supports “unusually creative early stage investigators” whose research can have a broad impact on biomedical sciences.
Raman’s project is focused on understanding protein allostery. Allostery is a property by which when something happens to one part of a protein, a signal is somehow communicated to another part of the protein, where another action takes place. This “long-distance” communication is called allostery.
“Allosteric proteins are nature’s switches,” explains Raman, who is also affiliated with the Department of Bacteriology and the Great Lakes Bioenergy Research Center. “The classical view, one that every biochemistry textbook follows, is that only some proteins exhibit allosteric properties. However, this view is dated. There is increasing recognition that allostery is a fundamental property of all proteins, just as folding is, and that allosteric behavior is more pronounced in some proteins than others. Allosteric proteins regulate many essential cellular processes required for life. They switch states from on to off or off to on and that’s how they turn on and off a very large number of genes. However, sometimes they acquire a mutation that causes the switch to be permanently on or off when it shouldn’t be. This dysfunction is responsible for many diseases, including cancer, because activities inside a cell are no longer regulated.”
Because of their central role in regulation, these proteins are popular drug targets. Raman says almost half of all current drug targets are allosteric proteins. Yet, little is understood about how allostery itself works.
Read more about this award and Raman’s work at the link below.